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LETTER TO THE EDITOR 

Magnetic excitations in some generalised Fibonacci 
layered structures 

M Kolaf and M K Ali 
Department of Physics, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4 

Received 23 September 1988 

Abstract. Long-wavelength magnetic excitations in aperiodic layered structures consistingof 
alternating magnetic and nonmagnetic layers are investigated. Real and periodic boundary 
conditions are used. Spin-wave spectra for Fibonacci superlattices with copper mean and 
golden mean are compared. 

Recent advances in experimental techniques have inspired studies [l-161 of electronic, 
optical, acoustic, superconducting and magnetic properties of quasi-periodic layered 
systems. Until our work [ 17-19] and the work of Riklund et a1 [8] and Fujita and Machida 
[9], studies of one-dimensional quasi-crystals were based mainly on the Fibonacci super- 
lattice with the golden mean. We found [17-191 that the dynamical trace maps of 
generalised Fibonacci superlattices are quite different to that of the Fibonacci lattice 
with the golden mean. Here we partially answer the question of whether their physical 
properties are also different. In our generalisation [17,18] it was assumed that a binary 
Fibonacci superlattice is formed by distributing two types of building blocks A and B 
according to the inflation scheme 

SL+l = S T S t - ,  (1) 

where So = B ,  SI = A, and m and n are integers. This inflation scheme is equivalent to 
a generalised substitution rule A-+ A"B", B + A, where A" represents a string of m 
As. The total number of blocks of types A and B in SL is equal to the generalised 
Fibonacci number FL defined by the recurrence relation FL = mFL-1 + nFL-*, Fo = 
F1 = 1. Then the limit value of the ratio of two subsequent FLs is 

o = lim F ~ / F ~ - ,  = i [m + (m2 + 4n)'I2]. 
L- 

Setting m = n = 1 gives the standard Fibonacci sequence with the golden mean o = og = 
t(l + G). The generalised Fibonacci superlattices with the silver mean os(m = 2, 
n = 1) = 1 + fi, copper mean oc(m = 1, n = 2) = 2 and nickel mean o,(m = 1, 
n = 3) = h(1 + a) have recently been studied [17,18]. 

Let us denote by NL(A) and NL(B) the number of blocks of types A and B ,  respect- 
ively, contained in S L ,  i.e. F L  = NL(A) + NL(B). The following simple relations are true 
in the case of the copper mean: NL(A) = NL(B) T 1, NL(A) = 2NL_, (A)  3 1, FL = 
2FL- k 1, where the upper signs hold for L even and the lower ones for L odd. These 
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relations differ from those for the Thue-Morse sequence [8] only by the presence of the 
T 1 and t 1 terms. While the generalised Fibonacci sequence with the copper mean is a 
genuinely aperiodic sequence, it possesses some ‘residual symmetries’ (similar to the 
Thue-Morse lattice) reminiscent of a periodic arrangement of A and B blocks. In the 
copper mean lattice the B blocks occur always in pairs separated by one, two or three A 
blocks. It is interesting to note that the copper mean lattice can be transformed to 
the periodic lattice AABBAABB . . . by local rearrangements of some A blocks. 
Furthermore, it can be seen that, by removing the last block, the stack for odd L has a 
mirror symmetry with respect to its centre. Recently, Fujita and Machida [9] have 
mentioned the substitution rule A + ABB, B -+ A,  which is equivalent to what we call 
the copper mean case. However, the authors did not do any calculations for this case. 
The mean purpose of this Letter is to investigate the spin-wave spectra in the mag- 
netostatic limit for the superlattice with the copper mean and to compare them with the 
results for the case with the golden mean [ 161. In our calculations we will use the transfer 
matrix method with both the real (rigid) and periodic boundary conditions as opposed 
to only periodic boundary conditions used in [ 161. 

In the present study the two building blocks A and B are assumed to be composed 
of a magnetic thin film of thickness lAm or lB, followed by a non-magnetic film of thickness 
lAn or lBn. TO get a truly aperiodic system, the inequalities lAm # lBm and/or lAn # lBn must 
hold. Magnetic excitations are considered within the framework of the macroscopic 
theory of spin waves. We ignore spin relation, magnetic anisotropy and exchange 
interaction [ 151. The basic theory for the problem is given in [ 151 and [ 161. We investigate 
the case where the magnetic field H o  and the saturation magnetisation M ,  are parallel to 
the interfaces between the layers. The coordinate system is oriented such that the y 
direction is normal to the interfaces and the z direction is parallel to the applied field. 
In the magnetostatic limit, the demagnetising field h corresponding to a particular 
eigenmode with circular frequency w (often measured in units of magnetic field, R = 
o / y )  can beexpressedin termsof magneticpotential, qM, suchthath = -VqM.  Because 
of the translational invariance in the x and z directions, magnetic potential has the form 
q M ( r )  = exp[iq(x cos 8 + z sin e)] yM(y),  where q is the magnitude of the wavevector 
along the interface plane, and 8 is the angle between this wavevector and the x axis. 

merates the blocks in the Fibonacci sequence, i = 1 , 2 , .  . . , F L ,  and; is the index of films 
inside the corresponding block ( j  # m for a magnetic film and; = n for a non-magnetic 
film); y 1  denotes the position of the interface between the (i - 1)th and ith blocks, a,, = 
q while a, depends [16] on q ,  8,  R ,  H,, and M,. The relations between the constantSA, 
and B, in the neighbouring films can be written in the transfer matrix form 

Here VMb) = exp[a,(,(y - Y,)] + B ~ ,  exp[-a,(y - yi)]; Y! < y < Y i + l ,  where enu- 

where the 2 X 2 matrices TI, and Tin can be expressed [16] in terms of CY,,, a,, 8, film 
thicknesses I ,  and the components of a frequency-dependent tensor. In (2) Ti = TinTim 
is the transfer matrix for the whole ith block. The stack S L  extends in they direction from 
yleft = y, to yrlght = yFL+l .  In accordance with (I), the full transfer matrix M L  = 
TF,TF-,- . . . T, of this stack satisfies the recursion relation 

ML+1= Mt- iM? MO zz TB M1 = TA. (3) 

Finally, it is necessary to specify some boundary conditions. One choice is the periodic 
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Figure 1. Spin-wave spectra with periodic boundary conditions for the copper mean lattice. 
L denotes the number of generations. Each block is made of Ni (magnetic) and MO (non- 
magnetic) films. The following parameters were used: M ,  = 480 G,  H o  = 1000 G; ql,, = 
0.1, qlA, = 0.06, qlBm = 0.1, 41," = 1.0, 6 = 0.0. Allowed bands are represented by vertical 
line segments. (a) Full spectra, ( b )  magnification of the region containing the quasi-con- 
tinuous cluster of bands. 

boundary conditions [16] for A,, and B,, which imply the condition -1 6 X ,  6 1, 
where X ,  = 4Tr(M,). The allowed eigenfrequencies S2 satisfying this condition span 
continuous bands. Since the matrices M, are unimodular, one can work, as in the case 
of electronic states [3, 171, directly with the recursion relations for the traces X ,  [17]. 

The golden mean case with the periodic boundary conditions is well illustrated in the 
work of Xiong [16],t for a Ni-Mo system with plots of allowed bands as a function of 
layer thicknesses, applied field and wavevector. In figure l ( a ) ,  we present the copper 
mean equivalents of the golden mean results of figure 1 of [16]. Unlike in the golden 
mean case, the spectrum of the copper mean lattice is not Cantor-like in its whole range. 
In the lower part of the spectra of figure l ( a )  there is an almost continuous cluster of 
bands (extending from S2 = 2878.2 to 2885.6 G) which is more clearly shown in figure 
l(b). We have verified that the total width of allowed bands in this cluster exceeds the 
total width of gaps for up to at least 20 generations (699051 blocks). The existence of 
such quasi-continuous clusters is related to the properties of the dynamical trace map of 
the copper mean lattice as will be shown elsewhere. The difference in the band structures 
of these two cases was expected since their dynamical trace maps are distinct. The trace 
map for the golden mean lattice is volume-preserving at all points, while it is not so for 
the copper mean lattice [20]. 

For a single stack S L ,  a more suitable choice is the real boundary conditions which 
also allow manifestations of possible surface effects that are neglected in the periodic 
boundary conditions. We assume that the stack SL  is embedded in an arbitrary non- 
magnetic medium. Thus on the lefr and right of the stack, y,,(y) is given by q M ( y )  = 
Ai,ftexp(%Y);y < yieft = 0, h ( Y )  = Brrghtexp[- nn(Y - Yr~ght)];y > yrlght .  The boundary 
conditions at y = yleft and y = yrlght can be expressed in the form 

t It seems that there are misprints in the values of o along the vertical axis of all the figures in [16], and the 
caption of figure 1 should contain IBm = 0.1 instead of lBm = 0.01. 
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Figure 2. Spin-wave spectra with real boundary conditions for the same parameters as in 
figure 1 ,  except for 91,,, = 1.0, 91," = 0.25. 91B, = 0.25, 91B, = 1.0. The discrete eigen- 
frequencies are marked by short horizontal lines. ( a )  Golden mean case, ( b )  copper mean 
case. The right vertical axis in both figures represents frequency v in GHz, whereas the left 
vertical axis represents Q in kG. 

respectively, where TleEt = To,(lo, = lo,,, = 0) and Trlght = TFL+lm(lFL+l,m = 0) are limit 
cases of the transfer matrices as defined in (2). Combining (4) with ML gives the following 
condition for the eigenfrequencies for real boundary conditions: (T,,ghtMLleft)ll = 0. As 
expected, this condition can be satisfied only for discrete values of Q. No recursion 
relation for the above 1.1 element is at hand; hence the full matrix relations (3) need to 
be used to obtain the eigenfrequencies. 

In Figure 2 we compare the modes of the golden and copper mean lattices for real 
boundary conditions. The parameters are such that IAm = lBn and IB, = IAn. In this 
'symmetric' case the total width of allowed bands in a quasi-continuous cluster of bands 
of the type shown in figure l ( b )  exceeds the total width of gaps more pronouncedly than 
in the asymmetric case discussed above. For large numbers of blocks in the stack, the 
regions containing the discrete eigenvalues are almost identical with the allowed bands 
for the periodic boundary conditions. The only difference is that there are also some 
isolated eigenfrequencies independent on L when L is large enough. They usually 
correspond to surface modes (two of them are shown in figure 4) of properties similar to 
those of the recently reported isolated localised electronic states [9]. The character of 
all other modes varies throughout the frequency spectrum considerably, more in the 
case of the copper mean than in the case of the golden mean. The spectrum of the golden 
mean case forms a Cantor set and the spatial dependence of all the modes has a self- 
similar character. On the other hand, the spectrum of the copper mean case (figure 2(b) )  
appears to be composed of a mixture of self-similar and regular patterns. The latter are 
represented by a homogeneous dense cluster of eigenfrequencies extending from Q = 
3126.8 to 3166.2 G that is shown enlarged in figure 3(a).  This cluster resembles the bands 
of extended modes of periodic systems. Also the spatial dependence of 1 qM(y)  1 in this 
frequency range is very regular (figure 4), and considerably resembles that of the 
extended modes of a periodic system. However, the sign of vM(y) in individual blocks 
varies aperiodically. In other frequency regions, the spectrum is Cantor-like (e.g. figure 
3(b))  and the corresponding modes are neither fully localised nor extended. The 'Bloch- 
like' behaviour of some modes found here resembles that of the electronic states of the 
Thue-Morse crystal [8], which is not surprising in view of some similarity between the 
two cases mentioned above. This would suggest that both the Thue-Morse and the 
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Figure 3. Two parts of the spectra ot figure 2(b)  enlarged. 
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Figure4. Several modes of the copper mean lattice spectra of figure 2(b)  The plots represent 
yM(y )  inside the magnetic films only The horizontal line in each plot represents the zero of 
yM(y) Generation number is indicated on the left of each plot and the frequency on the 
right T h e y  scale is the same in each plot, so that only about h of the whole extent of the 
stack with 13 generations (5461 blocks) is shown 
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copper mean lattices are intermediate cases between periodic and quasi-periodic 
crystals, as was claimed in [8] for the Thue-Morse lattice. On the other hand the structure 
factor of one-dimensional systems arranged according to the Thue-Morse sequence 
seems to point somewhere between the quasi-periodic and random systems [21]. Our 
preliminary calculations suggest that this may also be true for the Fibonacci lattice with 
the copper mean. The exact classification of these structures deserves further attention. 

From our model calculations, we have noticed here that there are important dif- 
ferences between the spectra of the golden mean and copper mean lattices. This suggests, 
among other things, that by purely geometrical means (ordering of layers), one is to a 
large extent able to modify the excitation spectra of the resulting systems. It will be 
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interesting to know if the calculated differences in the properties of generalised Fibonacci 
lattices are of importance from the experimental point of view. 
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